

CE

TWO STAGE DUAL FUEL BURNERS

- ► GI/EMME SERIES ► GI/EMME 300 107/175÷ 332 kW
 - ▶ GI/EMME 400 116/232÷ 465 kW
 - **▶ GI/EMME 600** 174/348÷ 665 kW
 - ▶ **GI/ EM M E 900** 250/525÷ 922 kW

The GI/EMME 300-900 series of burners covers a firing range from 107 to 922 kW. They have been designed for middle and high output users and they are suitable for matching with boilers that have pressurized combustion chambers.

Their use allows to have an high safety during operation thank to continuos working, guaranteed from the double fuel supply: this is necessary when gas distribution line isn't able to give continuouly the maximum required output.

Two operating options, gas or light oil, are available thank to a selector and a terminal board. The light oil circuit comes with its own electric motor: so the pump is stopped during gas operation to prevent pump seizure and to avoid oil in circulation.


A wide range of accessories and gas trains guarantee maximum working flexibility.

TECHNICAL DATA

Model			▼ GI/EMME 300	▼ GI/ EM M E 400	▼ GI/ EM M E 600	▼ GI/ EMM E 90	
Burner opera	ition mode			Two	stage		
•	atio at max. ouput			2	:1		
Camiamatan	type			LKS	210		
Servomotor	run time	s		Ę	5		
Heat output		kW	107/175 - 332	116/232 - 465	174/348 - 665	250/525 - 922	
		M cal/ h	92/150 - 286	100/200 - 400	150/299 - 572	215/452 - 793	
Working tem	perature	°C min/ max		0/-	40		
	Net calorific value	kWh/kg		11	,8		
Oil	Viscosity	mm²/s (cSt)		4-6 at	: 20°C		
	Delivery	kg/h	9/15 - 28	10/20 - 39	15/29 - 56	21/44 - 78	
_	type		AN 67	AN 67	AN 77	AN 97	
Pump	delivery	kg/h	75 at 12 bar	75 at 12 bar	100 at 12 bar	120 at 12 bar	
Atomised pro	essure	bar		1	2		
Fuel tempera	ature	max °C		6	0		
Fuel preheat				N	0		
	Net calorific value	kWh/Nm³			0		
G20	Density	kg/Nm³		0,			
	Gas delivery	Nm³/h	10,7/17,5 - 33,2	11,6/23,2 - 46,5	17,4/34,8 - 66,5	25/52,5 - 92,2	
	Net calorific value	kWh/Nm³	, , , ,	8.		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
G25	Density	kg/Nm³		0,			
	Gas delivery	Nm³/h	12,4/20,3 - 38,6	13.5/27 - 54	20,2/40,4 - 77,3	29/61 - 107,2	
	Net calorific value	kWh/Nm³	12, 1/ 20,0 00,0	25			
LPG	Density	kg/Nm³		2,(,		
	Gas delivery	Nm³/h	4,1/6,8 - 12,9	4,5/9 - 18	6,7/13,5 - 25,8	9,7/20,3 - 35,7	
Fan	Gas delivery	type	1,170,0 12,0	,	rward curve blades	0,1720,0 00,1	
	IIro	max °C			0		
•	Air temperature max Electrical supply Ph/		1/50/230		3N/50/230-	400 (+10%)	
-	ctrical supply	Ph/ Hz/ V	1/50/230 (±10%)				
Control box	ctrical supply	type	LFL 1.333				
Total electric	al nower	kW	0,5	0,62	1,1	2	
	ctrical power	kW	0,1	0,1	0,2	0,35	
Heaters elect	·	kW	0,1	-	-	0,00	
Protection le		N.V.	 44P				
	electrical power	kW	0,15				
-	motor current	A	1,4 2,85				
	start up current	A					
•	protection level	IP .	3,2			0,0	
•	ectrical power	kW	0,25	0,37	0,75	1,5	
Rated fan mo		A	1,85	2,9	2,85/1,65	6,55/3,15	
	art up current	A	4,2	6,6	6,5/3,8	32,75/15,75	
	rotection level	IP .	7,€		4	32,73/13,73	
· air motor pi	Ottoblion lovel	type			-		
Ignition trans	eformer	V1- V2		230 V -	1x8 kV		
iginition trans	Siornici	l1 - l2		1,8 A -			
Operation		11 - 12			t one stop every 24h)		
Sound press	IIro	dB(A)	69	74	82	84	
Sound powe		W	03				
Count powe	CO emission	mg/kWh			30		
	Grade of smoke indicator	N° Bacharach					
Oil	CxHy emission	mg/kWh					
	NOx emission	_			200		
	CO emission	mg/kWh		< 2			
G20		mg/kWh			120		
Directive	NOx emission	mg/kWh					
Directive					73/23 EEC		
Conforming	lu			EN 267	- EN 676		

Reference conditions:

Temperature: 20°C - Pressure: 1013,5 mbar - Altitude: 100 m a.s.l. Noise measured at a distance of 1 meter.

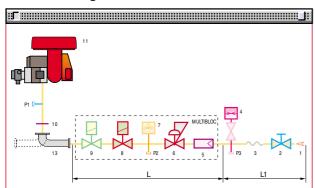
Useful working field for choosing the burner

Test conditions conforming to EN 267 - EN 676: Temperature: 20°C Pressure: 1013.5 mbar Altitude: 100 m a.s.l.

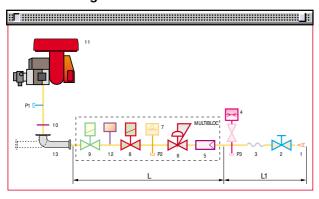
FUEL SUPPLY

GAS TRAIN

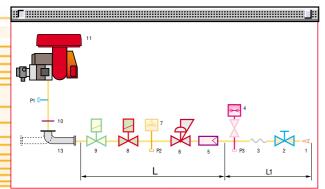
The gas trains are fitted with a regulating valve to adjusts fuel delivery in relation to heat required. This valve is controlled by the two-stages device fitted on the burner.


Fuel can be supplied either from the right or left sides, on the basis of the application requirments.

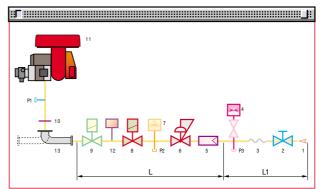
The gas train can be selected to best fit system requirments depending on the fuel output and pressure in the supply line. The gas trains can be "Multibloc" type (containing the main components in a single unit) or "Composed" type (assembly of the single components).



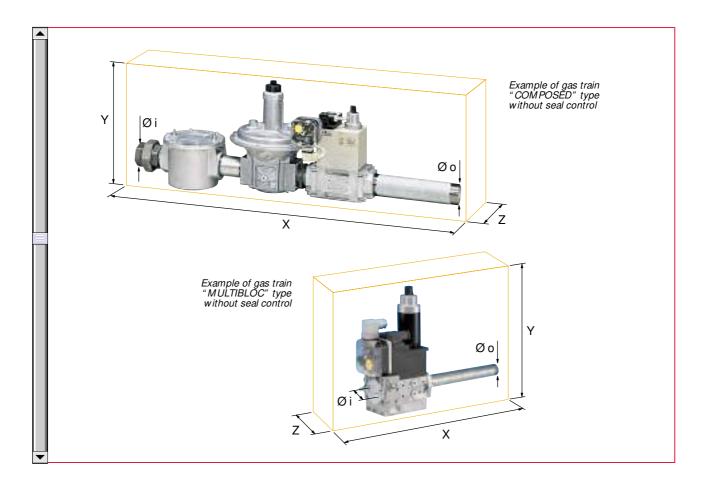
Example of gas inlet pipe burners for GI/EMME


MULTIBLOC gas train without seal control

MULTIBLOC gas train with seal control



COMPOSED gas train without seal control



- 1 Gas input pipework
- 2 Manual valve
- 3 Anti-vibration joint
- 4 Pressure gauge with pushbutton cock
- 5 Filter
- 6 Pressure regulator (vertical)
- 7 Minimum gas pressure switch
- 8 VS safety solenoid (vertical)
- 9 VR regulation solenoid (vertical).
 - Three adjustments: ignition delivery (rapid opening)
 1st stage delivery (slow opening)
 - 2nd stage delivery ((slow opening)
- 10 Gasket and flange supplied with the burner
- 11 Burner
- 12 Seal control mechanism for valves 8-9. According to standard EN 676, the seal control is compulsory for burners with maximum output above 1200 kW
- 13 Gas train-burner adapter.
- P1 Combustion head pressure
- P2 Pressure downstream from the regulator
- P3 Pressure upstream from the filter
- L Gas train supplied separately, with the code given in the table
- L1 Installer's responsibility

COMPOSED gas train with seal control

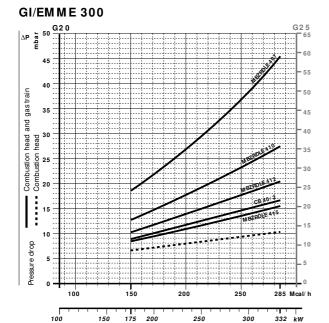
Gas trains are approved by standard EN 676 together with the burner.

The overall dimensions of the gas train depends on how they are constructed. The following table shows the maximum dimensions of the gas trains that can be fitted to RLS burners, intake and outlet diameters and seal control if fitted.

Please note that the seal control can be installed as an accessory, if not already installed on the gas train.

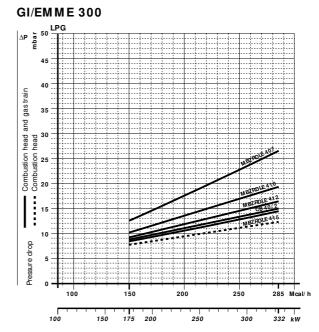
The maximum gas pressure of gas train "Multibloc" type is 300 mbar, and that one of gas train "Composed" type is 500 mbar.

	Name	Code	Øi	Øо	X mm	Ymm	Zmm	Seal Control
	M BZRDLE 407	3970150	3/4"	3/4"	195	235	120	-
LTIBLOC S TRAINS	M BZRDLE 410	3970151	1"	3/4"	195	235	145	-
BE	M BZRDLE 412	3970152	1" 1/4	1" 1/2	433	290	145	-
JLT AS T	M BZRDLE 415	3970183	1" 1/2	121/2	523	346	100	-
M O [®]	M BZRDLE 420	3970184	2"	2"	523	400	100	-
	M BZRDLE 420 CT	3970185	2"	2"	523	400	227	Incorporated
۵.,	CB 40/2	3970153	1" 1/2	1" 1/2	1013	346	195	-
POSED	CB 50/2	3970154	2"	2"	1150	354	250	-
PO F	CB 50/2 CT	3970166	2"	2"	1150	354	320	Incorporated
COM	CBF 65/2	3970155	DN 65	DN 65	1166	475	285	-
S	CBF 65/2 CT	3970167	DN 65	DN 65	1166	475	285	Incorporated

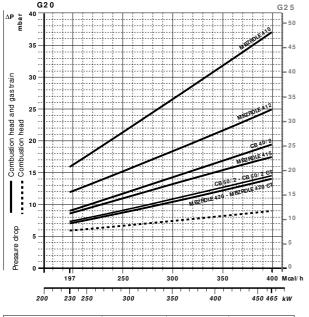

▼

▶ PRESSURE DROP DIAGRAMS

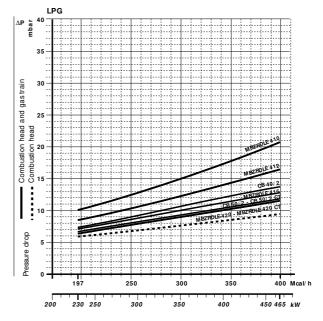
The diagrams indicate the minimum pressure drop of the burners with the various gas trains that can be matched with them; at the value of these pressure drop add the combustion chamber pressure.


The value thus calculated represents the minimum required input pressure to the gas train.

NATURAL GAS


Gas train	Code	Adapter	Seal Control	
M BZRDLE 407	3970150	3000824	Accessory	
M BZRDLE 410	3970151	3000824	Accessory	
M BZRDLE 412	3970152	3010124	Accessory	

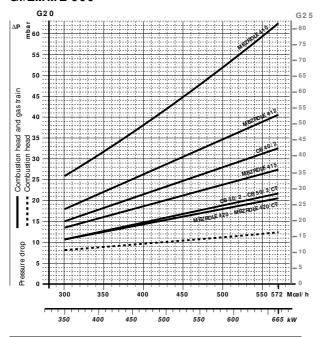
LPG


Gas train	Code	Adapter	Seal Control
M BZRDLE 415	3970183	-	Accessory
CB 40/2	3970153	-	Accessory

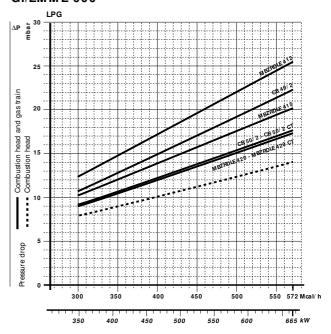
GI/EMME 400

Gas train	Code	Adapter	Seal Control
M BZRDLE 410	3970151	3000824	Accessory
M BZRDLE 412	3970152	3010124	Accessory
M BZRDLE 415	3970183	-	Accessory
CB 40/2	3970153	-	Accessorv

GI/EMME 400

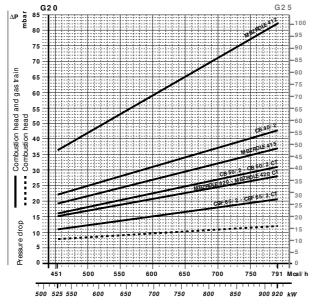


Gas train	Code	Adapter	Seal Control
CB 50/2	3970154	3000822	Accessory
CB 50/2 CT	3970166	3000822	Incorporated
M BZRDLE 420	3970184	3000822	Accessory
M BZRDLE 420 CT	3970185	3000822	Incorporated

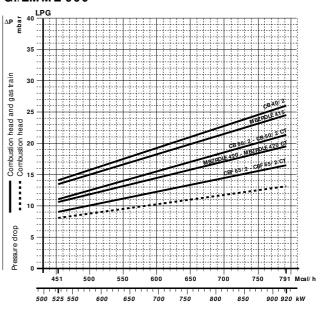

NATURAL GAS

GI/EMME 600

Gas train	Code	Adapter	Seal Control	
MBZRDLE 410	3970151	3000824	Accessory	
MBZRDLE 412	3970152	3010124	Accessory	
MBZRDLE 415	3970183	-	Accessory	
CB 40/2	3970153	-	Accessory	


GI/EMME 600

LPG


Gas train	Code	Adapter	Seal Control
CB 50/2	3970154	3000822	Accessory
CB 50/2 CT	3970166	3000822	Incorporated
MBZRDLE 420	3970184	3000822	Accessory
MBZRDLE 420 CT	3970185	3000822	Incorporated

GI/EMME 900

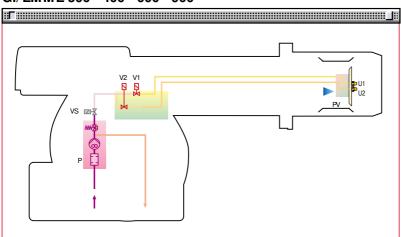
Gas train	Code	Adapter	Seal Control	
M BZRDLE 412	3970152	3010126	Accessory	
CB 40/2	3970153	3000843	Accessory	
M BZRDLE 415	3970183	3000843	Accessory	
M BZRDLE 420	3970184	-	Accessory	
M BZRDLE 420 CT	3970185	-	Incorporated	

GI/EMME 900

Gas train	Code	Adapter	Seal Control	
CB 50/2	3970154	-	Accessory	
CB 50/2 CT	3970166	-	Incorporated	
CBF 65/2	3970155	3000825	Accessory	
CBF 65/2 CT	3970167	3000825	Incorporated	

HYDRAULIC CIRCUIT

The burners are fitted with three valves (a safety valve and two oil delivery valves) along the oil line from the pump to the nozzle. A thermostatic control device, on the basis of required output, regulates oil delivery valves opening, allowing light oil passage trough the valves and to the nozzle.

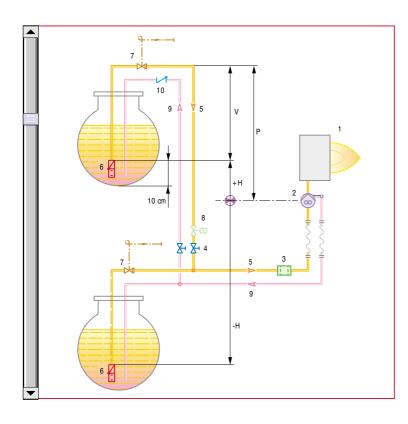

Delivery valves open contemporary to the air damper opening, controlled by a servomotor.

The pumping group is fitted whit a pump, an oil filter and a regulating valve: through this it is possible to manaully adjusts atomised pressure, which in factory is preset at 12 bar.

Example of light oil pump of GI/EMME burners

GI/EMME 300 - 400 - 600 - 900

Р	Pump with filter and pressure regulator on the output circuit
VS	Safety valve on the output circuit
V1	1st stage valve
V2	2nd stage valve
PV	Nozzle holder
U1	1st stage nozzle
U2	2nd stage nozzle



SELECTING THE FUEL SUPPLY LINES

The fuel feed must be completed with the safety devices required by the local norms.

The table shows the choice of piping diameter for the various burners, depending on the difference in height between the burner and the tank and their distance.

	MAXIMUM EQUIVALENT LENGTH FOR THE PIPING L[m]							
Model	▼ GI/ EM	ME 300	▼ GI/ EM	IME 400	▼ GI/ EN	MME 600	▼ GI/ E	MME 900
Piping diameter	8 mm	10 mm	8 mm	10 mm	10 mm	12 mm	12 mm	14 mm
+H, -H (m)	Lmax (m)	Lmax (m)	Lmax (m)	Lmax (m)	Lmax (m)	Lmax (m)	Lmax (m)	Lmax (m)
+4	33	83	20	51	51	112	71	138
+3	22	55	18	46	46	99	62	122
+4	19	48	16	39	39	86	58	106
+1,5	18	44	14	35	35	79	51	98
+1	16	40	13	32	32	73	44	90
+0,5	15	37	12	29	29	65	40	82
0	13	33	10	26	26	60	36	74
-0,5	12	29	9	23	23	54	32	66
-1	10	25	8	20	20	47	28	56
-1,5	8	21	6	16	16	40	23	49
-2	7	17	5	13	13	34	19	42
-3	4	10	3	7	7	21	190	26
-4	2	4	1	2	2	8	3	10

Н	Difference in height pump-foot valve
Ø	Internal pipe diameter
Р	Height ≤ 10 m
V	Height ≤ 4 m
1	Burner
2	Burner pump
3	Filter
4	Manual shut off valve
5	Suction pipework
6	Bottom valve
7	Remote controlled rapid manual shutoff valve (compulsory in Italy)
8	Type approved shut off solenoid (compulsory in Italy)
9	Return pipework
10	Check valve

▶ note

With ring distribution oil systems, the feasible drawings and dimensioning are the responsibility of specialised engineering studios, who must check compatibility with the requirements and features of each single installation.

VE

Example of air damper of GI/EMME burners

VENTILATION

The ventilation circuit comes with a forward blades centrifugal fan, which guarantees high pressure levels at the required air deliveries and permits installation flexibility.

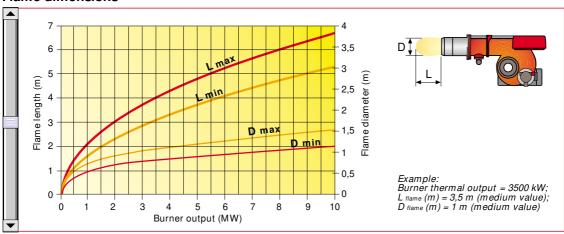
In spite of the remarkable output power and of the very high pressure performance, GI/EMME models are extremely compact.

A minimum air pressure switch stops the burner when there is an insufficient quantity of air at the combustion head.

A servomotor allows to have a right air flow in any operational state and the closure of air damper when burner is in stand-by.

Example of GI/EMME burners combustion head

Different lengths of the combustion head can be supplied (with application of a specific "extended head kit") for the GI/EMME series of burners.


The choice depends on the thickness of the front panel and type of boiler.

Correct head penetration into the combustion chamber depends on the type of heat generator.

The following diagram shows the flame dimensions in relation to the burner output. The lengths and diameter shown in the diagram below should be employed for a preliminary check: if the combustion chamber dimensions are different from the values in the diagram, further tests need to be done.

oustion chamber

Flame dimensions

ADJUSTMENT

BURNER OPERATION MODE

With two stage operation, the GI/EMME series of burners can follow the temperature load requested by the system. A modulation ratio of 2:1 is reached thanks to the nozzles when burner is supplied with light oil and to the two-stage gas train when burner is supplied from gas; the air is adapted to the servomotor rotations.

On "two stage" operation, the burner gradually adjusts output to the requested level, by varying between two pre-set levels (see figure A).

Two stage operation

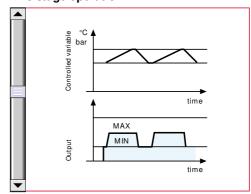
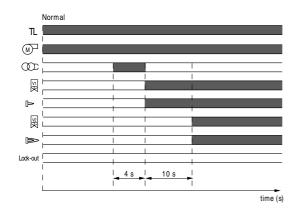
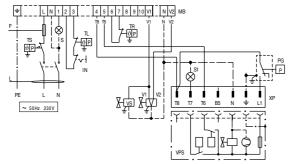



Figure A

▶ START UP CYCLE

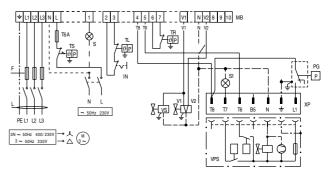
- 0" Thermostat closes. The motor starts running.
- 36" Pre-ignition (*)
- 1st stage valve opens; 1st stage flame 40"
- If heat request is not yet satisfied, 2nd 50" stage solenoid valve opens. The start up cycle comes to an end. 2nd stage flam e (* * *).
- (*) 49" for GI/EMME 300. (**) 55" for GI/EMME 300. (***) 67" for GI/EMME 300.


WIRING DIAGRAMS

Electrical connections must be made by qualified and skilled personnel, according to the local norms.

TWO STAGE OPERATION

GI/ EMME 300-400 Without seal control

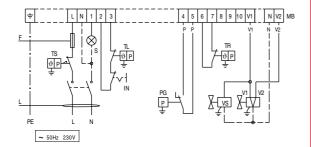


MB - Burner terminal board - Burner manual stop switch IN PG Min. gas pressure switch
 Remote lock-out signal S

- Load limit remote control system
- High-Low mode remote control system

Safety load control system
 Regulating valve 1st stage
 Regulating valve 2nd stage
 Safety valve

GI/EMME 600-900 Without seal control

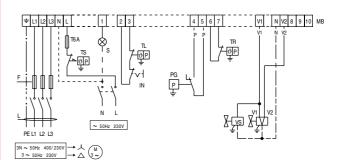


- Burner terminal board - Burner manual stop switch MΒ IN PG S TL TR TS V1 Min. gas pressure switch
Remote lock-out signal

- Load limit remote control system
- High-Low mode remote control system

Safety load control system
 Regulating valve 1st stage
 Regulating valve 2nd stage
 Safety valve

GI/ EMME 300-400 With seal control


MB - Burner terminal board

- Burner terminal board
- Burner manual stop switch
- Min. gas pressure switch
- Remote lock-out signal
- Remote lock-out signal of seal control device
- Load limit remote control system

- High-Low mode remote control system

MB - Burner terminal board - Burner manual stop switch - Min. gas pressure switch - Remote lock-out signal - Remote lock-out signal of st - Load limit remote control sy - High-Low mode remote con - Safety load control system VPS - Seal control device V1 - Regulating valve 1st stage V2 - Regulating valve 2nd stage VS - Safety valve - Plug for seal control device

GI/EMME 600-900 With seal control

ΜВ - Burner terminal board IN PG - Burner manual stop switch

S S1 TL TR

Min. gas pressure switch
 Remote lock-out signal
 Remote lock-out signal of seal control device
 Load limit remote control system

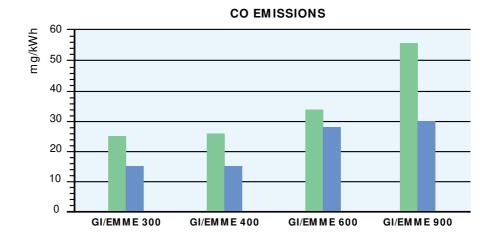
- High-Low mode remote control system

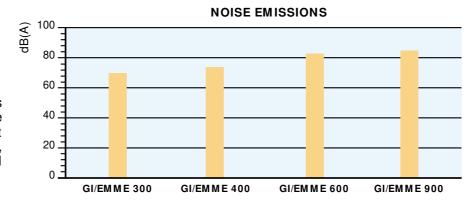
Hign-Low mode remote con Safety load control system
 Seal control device
 Regulating valve 1st stage
 Regulating valve 2nd stage
 Safety valve
 Plug for seal control device

TS VPS V1 V2 VS XP

The following table shows the supply lead sections and the type of fuse to be used.

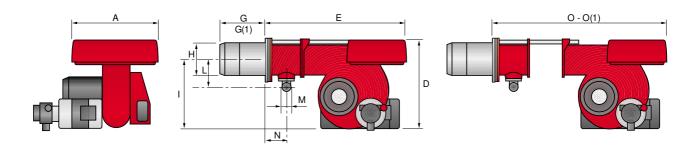
Model ▼GI/EMME300		▼ GI/ EM M E 300	▼ GI/ EM M E 400	▼ GI/ EN	1 M E 600	▼ GI/ EM M E 900		
		230V	230V	230V	400V	230V	400V	
F	Α	T6	T6	T6	T6	T16	T10	
L	$\rm mm^2$	1,5	1,5	1,5	1,5	1,5	1,5	



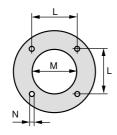

EMISSIONS

Gas working
Light oil working

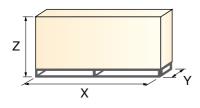
The emission data has been measured in the various models at maximum output, according to EN 676 and EN 267 standard.



OVERALL DIMENSIONS (mm)


BURNERS

Model	Α	Е	G	G(1)	D	Н	L	М	I	N	0	O(1)
▶ GI/ EM M E 300	410	610	185	320	397	140	165	1" 1/2	292	97	978	978
▶ GI/ EM M E 400	410	610	187	320	397	150	165	1" 1/2	292	97	1018	1018
► GI/ EM M E 600	410	645	187	320	437	155	165	1" 1/2	332	97	1063	1063
► GI/ EM M E 900	410	770	227	360	485	175	195	2"	370	131	1260	1260


⁽¹⁾ Dimension with "extended head".

BURNER - BOILER MOUNTING FLANGE

Model	L	М	N
▶ GI/ EMME 300	160	155	M 10
▶ GI/ EM M E 400	160	165	M 10
► GI/ EM M E 600	160	165	M 10
► GI/ EM M E 900	195	185	M 12

PACKAGING

Model	Х	Υ	Z	kg
▶ GI/ EM M E 300	835	530	453	42
▶ GI/ EM M E 400	835	530	453	49
► GI/ EM M E 600	880	530	500	64
► GI/ EM M E 900	103	530	435	88

RIELLO s.p.A. - Via degli Alpini, 1 - 37045 LEGNAGO (VR) Italy Tel. ++39.0442630111 - Fax ++39.044221980

Internet: http://www.rielloburners.com - E-mail: rburners@rielloburners.com